Polynomial Modules over the Steenrod Algebra and Conjugation in the Milnor Basis

نویسنده

  • KENNETH G. MONKS
چکیده

Let Ps = F2 [x1, . . . , xs] be the mod 2 cohomology of the s-fold product of RP∞ with the usual structure as a module over the Steenrod algebra. A monomial in Ps is said to be hit if it is in the image of the action A ⊗ Ps → Ps where A is the augmentation ideal of A. We extend a result of Wood to determine a new family of hit monomials in Ps. We then use similar methods to obtain a generalization of antiautomorphism formulas of Davis and Gallant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

Invariant elements in the dual Steenrod algebra

‎In this paper‎, ‎we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$‎, ‎where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$‎.

متن کامل

On the X basis in the Steenrod algebra

‎Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra‎, ‎where $p$ is an odd prime‎, ‎and let $mathcal{A}$ be the‎ subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers‎. ‎We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$‎.

متن کامل

Linking first occurrence polynomials over Fp by Steenrod operations

This paper provides analogues of the results of [16] for odd primes p . It is proved that for certain irreducible representations L(λ) of the full matrix semigroup Mn(Fp), the first occurrence of L(λ) as a composition factor in the polynomial algebra P = Fp[x1, . . . , xn] is linked by a Steenrod operation to the first occurrence of L(λ) as a submodule in P. This operation is given explicitly a...

متن کامل

The Intersection of the Admissible Basis and the Milnor Basis of the Steenrod Algebra

We prove a conjecture of K. Monks 4] on the relation between the admissible basis and the Milnor basis of the mod 2 Steenrod algebra A 2 , and generalise the result to the mod p Steenrod algebra A p where p is prime. This establishes a necessary and suucient condition for the Milnor basis element P(r 1 ; r 2 ; : : : ; r k) and the admissible basis element P t 1 P t 2 : : : P t k to coincide. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997